
Storage Structures and PerformanceStorage Structures and Performance

The physical layer of the database consists of a number of files in which 
the data and metadata are stored

This can be changed without affecting the information content of the g g
database -
– since there are many different file structures that can be used to 

store data expressed in the logical modelstore data expressed in the logical model

• e.g. there are many ways of representing a table as a file of 
datadata

– only the speed of data access is affected by the use of different 
representations

– in particular, sorted files are quicker to search that unsorted files

537 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

What a DBA Can Do

There are a number of aspects of the physical structure that the DBMS 
might allow the Database Administrator to vary  (NB these are highly 
privileged tasks)privileged tasks)
– the order in which the data is stored - ordered data is quicker to 

search
– hashing functions which calculate storage locations from data 

values
indexes added to the fundamental data structure– indexes added to the fundamental data structure

– the storage structure for a set of records
– the way in which the data is split between filesy p
– in particular extra support for joined data
– clustering data on the same disk page which will be used together
– how to allocate space among the disk pages

NB – reducing the amount of disk i/o is the main performance goal

538 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

g p g

Unordered Searching

Linear Search Technique (this makes no assumptions on the order of 
records)

S fi d– Start at first record
– Go on if it's not the one you want
– Fail if you reach the endFail if you reach the end

To find a record that is there will take on average N/2 accesses where 
N is the number of records

Failure to find a record will take N accesses

Th t i l ti i id t b f d N hi h i itt O(N)The retrieval time is said to be of order N which is written   O(N)

Example.  If Access Time = 1/1000 sec. and N = 1,000,000
– Average Time to find = 500 secs = 8 minutes
– Failure to find > 1/4 an hour

539 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

Ordered Searching Key Slide

Binary Search Technique   (Assume the records in the file are ordered in 
ascending order based on some aspect of the content)

S i h h iddl d– Start with the middle record

– There are three cases:
• it's the one that you want - you can quit with success
• it's bigger than the one you want - you can ignore the first half
• it's smaller than the one you want you can ignore the second• it s smaller than the one you want - you can ignore the second 

half

If it is bigger repeat with the record that is in the middle of the– If it is bigger, repeat with the record that is in the middle of the 
upper half

If smaller start from the middle of the lower half– If smaller, start from the middle of the lower half

– Keep doing this until either you find your record
't bdi id

540 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

or you can't subdivide any more



Example, Binary Search with N = 8

The values are 1 3 5 7 9 11 13 15 
Find 11: try middle - this is 9 ^

i l h lf (1 7)ignore lower half (1-7) x x x x x
try middle of those left - 13 ^
ignore upper half (15) x x x x x x x
try middle of those left - ^
this is 11- quit with success

______________________
1 3 5 7 9 11 13 15

Find 6:  try middle - this is 9 ^
ignore upper half (11-15) x x x x
try middle of lower half - 5 ^
ignore lower half (1 and 3) x x x x x x xignore lower half (1 and 3) x x x x x x x
try middle of upper half - 7 ^
nothing left - quit with failure x x x x x x x x

541 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

Time Improvement 

To find a record by binary search takes on average  log2 (N)/2

To fail to find the record takes log2 (N)

The retrieval time is of order, log2 (N) - written 0 (log (N))

For large N, this is very much smaller than N - it is the inverse of raising 2 to 
the power of N

Example:
– Ave time to find =  log2 (1,000,000) / 2 x 1,000

= 20/2000 = 1/100 second0/ 000 / 00 seco d

But only if it is ordered on the attribute we are looking for

– there is no speed up on finding employees by name if they are ordered 
by staff number

542 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

Considerations On File Organisation

1/ Access Time
– The time to find an item

2/ Insertion Time
The time to place an item and update all the indexes– The time to place an item and update all the indexes

3/ Deletion Time
– Access time plus the time to update all the indexes

4/ Space Overhead
– Physically ordered files are minimal

Pointers and indexes cost space– Pointers and indexes cost space

543 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

Ordered and Unordered File Structures For Relations

Unordered Files (Heap Files)
– Put each new record at the end of the file
– Fast at : insertion
– Slow at : access - you must use linear search

Space overhead: leaves gaps after deletion New record– Space overhead: leaves gaps after deletion New record

Sequentially Ordered Files (ISAM Files)
– Each row is added in order of the primary key
– Fast at: retrieval - if by the primary key
– Slow at: insertion, retrieval – each means re-ordering

Space overhead : none
New record
Th t– Space overhead : none These get

shuffled down

544 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)



Sequentially Ordered With Overflow File Structures

The file is mostly ordered with added records tacked on 
to the end

I i i f j d– Insertion is fast - just at end
– Search is quite fast

• quick search of the bulk of the file
Ordered
recordsquick search of the bulk of the file

• slow search of the end
– Regular integration of the unordered section 

records

with the ordered part - e.g. at weekends.

Unordered
records

New record

545 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

Hashed Files I

4.  Hashed Files (c.f. Cryptography)
– A hash function generates an address from the attribute values.

• Simplified example:  name --> add values for each character 
(A = 1, B = 2, etc.)

– Thus "BOB" becomes 2 + 15 + 2 = 19 and 19 is the address ofThus BOB  becomes 2  15  2  19 and 19 is the address of 
Bob's data.

– Can give rise to collisions!  OBB = 19 as well.

Bob'sData19

546 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

Hashed Files II

Hashed structures need careful organisation, with:
– good hash functions which spread the addresses well -

the example is a very bad one

– a sensible method of resolving collisions, e.g.
• having an overflow area
• using a second hash function
• using the next available space• using the next available space

– a sensible partitioning of the disc - so that several records share a 
partitionp

and
– structures to handle overflow if a partition becomes full

Dynamic hashing re-organises the storage as the database becomes 
bigger

547 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

Indexes Key Slide

Indexes are additional file structures similar to the indexes of books which 
do not hold fresh data, but ways of ordering addresses to the data

An index allows the data to be unsorted and pairs a set of data values with 
addresses for records with those values.

The primary index uses the primary key, secondary indexes other 
columns, thus:

Primary Index Secondary Index on Column C

123      5432 5432 Record with key 123 "DEF"  7654

Primary Each key is Another Each value is

Record with C="DEF"7654

548 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

Primary 
keys in 
order

Each key is 
paired with an 
address

Another 
attribute 
in order

Each value is 
paired with an 
address



Example

Books

CatalogueN Author Title

Primary 
Index Next

Secondary 
IndexCatalogueN Author Title Next Index

Butler Erewhon
1002
1001

1002
1001

Taylor Angel Austen
Austen

Austen

Austen
Hesse1004

1005

1003 1004
1005
1006

Emma

Persuasion
Siddhartha Chatwyn

Durrell

Butler

Austen
Joyce
Kipling
Farrell

1006
1007
1008

1007
1008
1009

Ulysses
Kim
Troubles

Farrell
Hesse
JoyceFarrell

Chatwyn
Orwell
D ll

1008
1009
1010
1011

1009
1010
1011
1012

Troubles
Songlines
1984
Justine

Joyce
Kipling
Nye
Orwell

Sterne
Nye
Durrell1011

1012
1013

1012
1013
1003

Falstaff
Clarissa

Justine Orwell
Sterne
Taylor

549 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

Balanced Trees (B-trees)

are one of the main implementation techniques for indexes

They consist of a tree structure in which each node (except the leaf nodes) 
contains data pointers, decision values and tree pointers to other nodes
– a decision value determines which tree pointer to follow to look 

for the data pointer for that value

The structure of a tree node is:
– pointer1, decisionValue1, pointer2….decisionValuen pointern+1
– if you are looking for a key value, compare it with the first 

decision value
– if it is less than the value follow pointer1p 1
– otherwise try the next decision value
– if it is more than the last decision value follow pointern+1

The depth of the tree is the length of the path from root to leaf nodes
– in a balanced tree, this is the same for all leaf nodes

h f h i h b f d i i l i d

550 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

The order of the tree is the number of decision values in a node

B+ Trees
There are many versions of the basic B-tree structure

– B+ trees are the usual one used – they only have data pointers in 
the leaf node

– i.e. non-leaf nodes only have decision values and tree pointers 
while leaf nodes only have data pointers
l f d ll h i d i li k d li t f t l– leaf nodes are usually chained in a linked list for easy traversal

 

1004 Books with Key > 1004Books with Key <= 1004

1002 1006

1001 1003 1005 1007

1001 1002 1003 1005 1006 1007 1004 

1001 1003 1005 1007

1001 
Butler

1002 
Taylor

1003 
Sterne

1005 
Hesse

1006 
Austen

1007 
Joyce

1004 
Austen

551 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

Butler 
Erewhon 

Taylor 
Angel 

Sterne 
Clarissa 

Hesse 
Siddharta 

Austen 
Persusasion 

Joyce 
Ulysses 

Austen 
Emma 

Indexes on Multiple Keys 

What if the key spans more than one column?
There are several structures for this:

– using lexographic ordering - i.e. order on one column, then 
resolve clashes on this column using values from the next

• e g order on name and when two people have the same namee.g. order on name and, when two people have the same name, 
order on age.

– use a hash function with one parameter for each column

Attribute 1 Values
– use a grid file

A grid file is a two-dimensional index:
Considerable space overhead and some

te
 2

 V
al

ue
s– Considerable space overhead and some 

increase in insertion/deletion time.
– There are many different kinds

R

A
ttr

ib
ut– They speed up 'multi-key' queries

- i.e. search on two fields at once.
hi f X Y iti

552 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

e.g. searching for X, Y position



Creating Indexes

Indexes can be created as in:
create index authorTitle  on  book (author, title)

Thi d fi t b th d th b titl t b k ti– This means order first by author and then by title to break ties

They are destroyed with the drop command
or if the table is dropped

Indexes are kept up to date by the system

Each index speeds up searches on the indexed attribute, but ...

Each index takes a little space and also takes time to keep up-to-date
so you don’t index everything

You should index any variable you use frequently in searches – e.g. names

In most systems, you should not index the primary key, since the system

553 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

In most systems, you should not index the primary key, since the system 
will maintain a primary index automatically

Storage Structures in Microsoft Access

Access provides relatively little control over the structure of the database
– since it is designed for small databases, performance is not a big 

iissue
– also it is designed for casual users who may not understand the 

effect of different structures

It has two main techniques:
i) Any column of the database can be indexed there is a fieldi) Any column of the database can be indexed - there is a field 

property which determines whether or not it is indexed and you 
can say whether or not duplicates are allowed

• Indeed, if the column has “ID” in its name, it will be indexed 
automatically

ii) The database can be split into two parts - the tables in one file, 
queries, etc. in another

• this allows multiple user interfaces to be sure to access the

554 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

this allows multiple user interfaces to be sure to access the 
same physical data and is not really to do with performance

Storage Structures in Oracle I

NB – for more see the Oracle Server Concepts Manual

Oracle databases have a complex internal structure:Oracle databases have a complex internal structure:
i)  a database is made up of one or more tablespaces:

• a tablespace is a logical partition of the database, so that the p g p ,
DBA can:

i) control disk space for individual users
ii) k f h d b ff li i h iii) take some parts of the database off-line without removing 

the whole database
iii) control space allocation for the data) p
iv) distribute the database
v) perform backup and recovery

• the database always has at least one tablespace - the system 
tablespace

555 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

– this has the data dictionary in it and can never be off-line

Storage Structures in Oracle II

ii)  the create table command can be used to partition a table among tablespaces
– to increase efficiency, particularly of very large databases, and to reduce 

d idowntime
– range partitioning is used to allocate records to partitions, e.g.

create table Project( Pnumber Number ControllingDept Number etc )create table Project( Pnumber Number, ControllingDept  Number,  etc. )
partition by range( ControllingDept)

(partition Project1 values less than( 20 )  tablespace TSA,
partition Poject2 values less than( 40 )  tablespace TSB )

iii) a tablespace is made up of one or more data files:iii)  a tablespace is made up of one or more data files:
– these are created to be of a fixed size, reserving disk blocks for this 

database
– allocation of data to data files is usually controlled by Oracle, not the user 

nor the DBA

556 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

iv)  a database also has redo-log files – see section on recovery later in the course



Storage Structures in Oracle III

v)  a database is also logically split into a number of segments, each of 
which can contain

ll f h d f bl– some or all of the data from a table
– an index
– rollback data - see transactions slides later in courserollback data see transactions slides later in course
– temporary data, created when processing a query 

i) i di id d i b f t tvi)  a segment is divided into a number of extents:
– an extent contains data of the same type

vii)  an extent is a contiguous sequence of data blocks
– these are fixed size sections of a data file and have free space in 

them for new datathem for new data
– new records, when created, are usually allocated to one data block, 

but may have to span more than one

557 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

Storage Structures in Oracle IV

viii) tables can have indexes associated with them, e.g.
create index empNameIndex  on Employee(lname, fname)

ix) the tables in a database may also be grouped into logical units - called 
clusters:
– a cluster groups tables which are related, so that related data is 

brought into memory at the same time
it is also possible to group records in a cluster using a hash– it is also possible to group records in a cluster using a hash 
function on the key 

558 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

What the DBA Can Control in Oracle

1.  SQL commands to create indexes, clusters, rollback segments, partitions

2.  The create database command allows the DBA to list the data files

3.  There is a storage clause to create table, create index, create cluster, etc.
– This determines the size of the first and subsequent segments

4.  To add more storage to a database, the DBA can add datafiles, tablespaces or 
increase the size of a datafile

5 DBA l f h f i d t bl k i5. DBA can control use of the free space in data blocks using two parameters:
– PCTFREE - this is the percentage of the data block which will be left free 

for updates to records which are already therep y
new records will not be added if the block becomes fuller than this;

– PCTUSED - this is the percentage of the file below which data will resume 
b i dd d t th bl kbeing added to the block, e.g.

if PCTFREE is 20% and PCTUSED is 50%
new records will be added until 80% of the block is used;

559 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)

new records will be added until 80% of the block is used;
no records will be added until deletions drop space used to below 50%.

The Data Dictionary in Oracle

The data dictionary is the storage of meta-data, as used (e.g.) by the 
Schema Manager.

This is stored in the same structure as the data – i.e. as a set of tables and 
includes the following:
– the names and passwords of Oracle users
– the privileges and roles of these users  - see Security slides later in 

the coursethe course
– the names of schema objects (tables, views, indexes, etc.)
– information about integrity constraints
– default values for columns
– space use information

diti i f ti– auditing information
– “other database information” 

560 10/12/2009MSc/Dip IT - ISD L22 Storage Structures (537-560)


